Parasites lacking the micronemal protein MIC2 are deficient in surface attachment and host cell egress, but remain virulent in vivo
نویسندگان
چکیده
Background: Micronemal proteins of the thrombospondin-related anonymous protein (TRAP) family are believed to play essential roles during gliding motility and host cell invasion by apicomplexan parasites, and currently represent major vaccine candidates against Plasmodium falciparum, the causative agent of malaria. However, recent evidence suggests that they play multiple and different roles than previously assumed. Here, we analyse a null mutant for MIC2, the TRAP homolog in Toxoplasma gondii. Methods: We performed a careful analysis of parasite motility in a 3D-environment, attachment under shear stress conditions, host cell invasion and in vivo virulence. Results: We verified the role of MIC2 in efficient surface attachment, but were unable to identify any direct function of MIC2 in sustaining gliding motility or host cell invasion once initiated. Furthermore, we find that deletion of mic2 causes a slightly delayed infection in vivo, leading only to mild attenuation of virulence; like with wildtype parasites, inoculation with even low numbers of mic2 KO parasites causes lethal disease in mice. However, deletion of mic2 causes delayed host cell egress in vitro, possibly via disrupted signal transduction pathways. Conclusions: We confirm a critical role of MIC2 in parasite attachment to the surface, leading to reduced parasite motility and host cell invasion. However, MIC2 appears to not be critical for gliding motility or host cell invasion, since parasite speed during these processes is unaffected. Furthermore, deletion of MIC2 leads only to slight attenuation of the parasite.
منابع مشابه
Toxoplasma gondii protease TgSUB1 is required for cell surface processing of micronemal adhesive complexes and efficient adhesion of tachyzoites.
Host cell invasion by Toxoplasma gondii is critically dependent upon adhesive proteins secreted from the micronemes. Proteolytic trimming of microneme contents occurs rapidly after their secretion onto the parasite surface and is proposed to regulate adhesive complex activation to enhance binding to host cell receptors. However, the proteases responsible and their exact function are still unkno...
متن کاملC-terminal processing of the toxoplasma protein MIC2 is essential for invasion into host cells.
Host cell invasion by apicomplexan parasites is accompanied by the rapid, polarized secretion of parasite proteins that are involved in cell attachment. The Toxoplasma gondii micronemal protein MIC2 contains several extracellular adhesive domains, a transmembrane domain, and a short cytoplasmic tail. Following apical secretion, MIC2 is transiently present on the parasite surface before being tr...
متن کاملRhomboid 4 (ROM4) Affects the Processing of Surface Adhesins and Facilitates Host Cell Invasion by Toxoplasma gondii
Host cell attachment by Toxoplasma gondii is dependent on polarized secretion of apical adhesins released from the micronemes. Subsequent translocation of these adhesive complexes by an actin-myosin motor powers motility and host cell invasion. Invasion and motility are also accompanied by shedding of surface adhesins by intramembrane proteolysis. Several previous studies have implicated rhombo...
متن کاملThe toxoplasma proteins MIC2 and M2AP form a hexameric complex necessary for intracellular survival.
Toxoplasma gondii parasites gain entry into host cells through a process that depends on apically stored adhesins that are strategically released during invasion. One of these adhesins, microneme protein 2 (MIC2), is a type one transmembrane protein that binds to an accessory protein known as MIC2-associated protein (M2AP). Together the MIC2 x M2AP complex participates in host cell attachment a...
متن کاملA Toxoplasma gondii Ortholog of Plasmodium GAMA Contributes to Parasite Attachment and Cell Invasion
Toxoplasma gondii and its Plasmodium kin share a well-conserved invasion process, including sequential secretion of adhesive molecules for host cell attachment and invasion. However, only a few orthologs have been shown to be important for efficient invasion by both genera. Bioinformatic screening to uncover potential new players in invasion identified a previously unrecognized T. gondii orthol...
متن کامل